eduMedia Apps

Primary School Science 3.8
eduMedia
eduMedia is the largest online repository ofinteractive resources for science, technology and math teaching.• Really interactive and highly visual simulations• Virtual experiments• Understanding sciences through videos and engagingsimulations• Knowledge testing with quizzeseduMedia is trusted by thousands of teachers and students acrossthe world to prepare lectures, illustrate, review or simply sparktheir own curiosity.Download this free app to discover an amazing collection ofsimulations for primary schools.If you already have a username and password, you can log in andaccess eduMedia content directly from the app at no additionalcost.eduMedia covers subjects such as: human body, plants andanimals, earth science, math and technology.An other eduMedia app is available for secondary schoolcontents.
Science simulations Secondary 3.8
eduMedia
eduMedia is the largest online repository ofinteractive resources for science, technology and math teaching.• Really interactive and highly visual simulations• Virtual experiments• Understanding sciences through videos and engagingsimulations• Knowledge testing with quizzeseduMedia is trusted by thousands of teachers and students acrossthe world to prepare lectures, illustrate, review or simply sparktheir own curiosity.Download this free app to discover an amazing collection ofsimulations.If you already have a username and password, you can log in andaccess eduMedia content directly from the app at no additionalcost.eduMedia covers subjects such as: chemistry, biology, physics,earth science, and technology.An other eduMedia app is available for primary schoolcontents.
Crookes Tube 1.0
eduMedia
This animation describes J. J. Thomson’ssecond experiment involving the deviation of an electron beam in avacuum tube, called a Crookes Tube.A partial vacuum (less than 10-6 atm) is maintained in the tube. Ahigh voltage (between 10 and 100 kV) is applied between twoelectrodes. The very intense electric field that results from thisaccelerates the few ions present in the tube which, via coliisions,ionize other particles. The lower the pressure , the more theelectrons thus liberated and accelerated travel great distancesuntil they strike the screen at the opposite end of the tube.By studying the deviation of this beam, J. J. Thomson, in 1897,isolated a new elementary particle carrying a negative charge – theelectron.This apparatus constitutes the first particle accelerator. As aresult of his work, Thomson proposed a completely new model of theatom (Thomson’s Plum Pudding Model) that one of his students,Ernest Rutherford, would improve upon 10 years later.Click and drag the cursor to change the intensity of the voltageapplied between the plates.
Jour et nuit 1.0
eduMedia
La durée du jour par rapport à celle de lanuit dépend de la date et du lieu. Ceci est du à la sphéricité dela terre et à son inclinaison par rapport au Soleil.La zone de la Terre qui se trouve dans l'ombre du Soleil correspondà la zone de nuit. Cette zone est une demi-sphère mais ramenée surla projection plane d'une mappemonde, cette zone d'ombre prend uneforme compliquée qui évolue au cours de l'année.Cette animation permet de simuler cette évolution et d'illustrerles phénomènes suivants:La durée d'ensoleillement est plus grande dans l'hémisphère nord enété.L'été dans l'hémisphère nord correspond à l'hiver dans l'hémisphèresud et vice versa.Les solstices d'été et d'hiver sont les moments de l'année où ilexiste la plus grande différence de durée entre le jour et lanuit.Les équinoxes de fin mars et fin septembre sont les périodes del'année où la durée du jour égale celle de la nuit (12h) à toutendroit de la Terre.La durée du jour égale celle de la nuit pour tous les points situéssur l'équateur.Les régions polaires subissent une journée polaire (été) ou unenuit polaire (hiver) pouvant durer jusqu'à 6 mois.Cliquer sur le bouton "lecture" pour accélérer le défilement dutemps.Cliquer puis faire glisser le curseur pour changer la date.Cliquer puis pivoter le globe terrestre pour modifier l'angle devue.Day length relative tothat of the night depends on time and place. This is due to thesphericity of the earth and its inclination relative to theSun.The area of ​​the Earth which is in the shadow of the sun in thesleeping area. This area is a half-sphere, but returned on theplanar projection of a world map, this shadow takes a complicatedform that evolves during the year.This animation simulates the evolution and illustrate the followingphenomena:The sunshine duration is greater in the northern hemispheresummer.Summer in the northern hemisphere is winter in the southernhemisphere and vice versa.The summer and winter solstices are the times of year when there isthe greatest time difference between day and night.Equinoxes late March and late September are the periods of the yearwhen day length equals that of the night (12h) at any location onEarth.Day length equals that of the night for all points on theequator.The polar regions are polar day (summer) or a polar night (winter)for up to 6 months.Click the "play" button to scroll faster time.Click and drag the slider to change the date.Click and rotate the globe to change the angle of view.
Longitude and Latitude 1.0
eduMedia
After several shipwrecks, England decided in1714 to create an office of longitudes (Board of Longitude) whichoffered a reward to anyone who could find a way of locating one’sposition on land and at sea.The problem is very complex, and navigators continued to usesextants and other astrolabes to find their location at sea.Wireless telegraphy at the end of the 19th century, and, morerecently, the GPS with its procession of satellites, finallybrought a precise solution to this problem.Every point on the surface of the Earth can be located by twoangles, in units of degrees.Latitude: the angle that varies from 90°S (South) to 0° for pointslying on the Equator, then from 0° to 90°N (North) for points thatare above the Equator.Longitude: the angle that varies from 180°W (West) to 0° (thereference meridian, called the Greenwich Meridian), then from 0° to180°E (East).Click and drag point P on the right hand map in order to changelocations.Click on the Earth and drag it to make it rotate.
Sous-marin 1.0
eduMedia
Un sous-marin est un navire capable denaviguer sous l'eau.Le principe de fonctionnement repose sur la recherche d'unéquilibre entre le poids du navire qui tend à le faire couler et lapoussée d'Archimède qui tend à le faire flotter.Un objet flotte si la poussée d'Archimède est plus forte que lepoids.Un objet coule si la poussée d'Archimède est plus faible que lepoids.L'intensité de la poussée d'Archimède est proportionnelle à lamasse d'eau que déplace les parties immergées de l'objet.Un objet flotte si la masse d'eau qu'il déplace est supérieure à sapropre masse.Un objet coule si la masse d'eau qu'il déplace est inférieure à sapropre masse.voir l'animation "flotte ou coule".Cliquer sur les boutons pour vider ou remplir les ballasts.A submarine is a shipable to navigate underwater.The principle of operation is based on finding a balance betweenthe weight of the ship which tends to run and buoyancy which tendsto float.An object floats when the buoyancy is stronger than theweight.An object sinks if the buoyancy is less than the weight.The intensity of the buoyancy is proportional to the water massthat moves the immersed parts of the object.A fleet object if the water mass that moves is greater than its ownweight.An object flows if the mass of water it displaces is less than itsown weight.see the animation "floats or sinks."Click the buttons to empty or fill the ballasts.
Terra Interrativa 1.1
eduMedia
Che aspetto aveva la terra 200 milioni di annifa? C’è una relazione tra i terremoti e l’attività vulcanica?Terra Interattiva è una risorsa didattica interattiva che tipermette di scoprire la geografia, il clima e la geodinamica delnostro pianeta.Per la realizzazione di questo progetto, eduMedia ha beneficiatodella consulenza delle più rinomate istituzioni scientifiche comel’IPGP (Institut de Physique du Globe de Paris) e il NOAA (NationalOceanic and Atmospheric Administration).Ogni applicazione include mappe 3D interattive sovrapponibili. Idati dinamici, come le correnti marine o l’evoluzione dellacopertura vegetale, sono animati.Molte altre mappe ti consentono di esplorare montagne, fiumi,deserti, aree climatiche, la tettonica a placche, l’attivitàsismica e vulcanica, le faglie…What was the earth 200million years ago? There is a relationship between earthquakes andvolcanic activity?Earth Interactive is an interactive educational resource thatallows you to discover the geography, climate and the geodynamicsof our planet.For the realization of this project, eduMedia benefited from theadvice of the most renowned scientific institutions like the IPGP(Institut de Physique du Globe de Paris) and NOAA (National Oceanicand Atmospheric Administration).Each application includes interactive 3D maps overlapping.Dynamic data, such as ocean currents, or the evolution of thevegetation cover, are animated.Many other maps allow you to explore the mountains, rivers,deserts, climate zones, plate tectonics, seismic activity andvolcanic faults ...
Rust 1.0
eduMedia
Iron nails are placed in fiveenvironments:Tube 1: Just in airTube 2: A part of the nail is immerged in waterTube 3: A part of the nail is immerged in salt waterTube 4:The nail is completely immerged in boiling water and a layerof oil separates the water from the airTube 5: A dehydration product (Calcium chloride or Copper Sulfate)absorbes the humidity contained in the air.The different hypotheses or this experiment allow us to explain theformation of rust:Only the nails in the three tubes on the left rust, at a fast rate.The two experiments on the right slow down or stop the formation ofrust.This allows us to confirm that iron does not rust until it is incontact with air and water.
Submarine 1.0
eduMedia
Click on the buttons to fill or empty theballast tank.
Lois de Kirchhoff 1.0
eduMedia
Les grandeurs électriques de type tension etcourant sont mesurées pour trois circuits simples, afin de mettreen évidence les lois fondamentales qui régissent les circuitsélectriques:- loi d'Ohm- lois des nœuds- lois des maillesPour chaque circuit, un graphe permet de suivre l'évolution ducourant en fonction de la tension pour différentes valeurs derésistance.Déplacer les curseurs pour fixer une valeur de tension et derésistance.Electrical quantities ofvoltage and current type are measured for three simple circuits tohighlight the fundamental laws that govern electricalcircuits: - Ohm's Law - Laws nodes - Laws meshFor each circuit, a graph is used to monitor the current versusvoltage for different values ​​of resistance.Move the sliders to set a value of voltage and resistance.
Power dissipated by a resistor 1.0
eduMedia
The circuit is made up of a variable powersupply, a variable resistor R and, a light bulb all connected inseries.An ammeter, placed in series, allows the current, I, to bemeasured. A voltmeter connected in parallel with the resistor, R,allows the voltage across the resistor VR to be measured.The light bulb acts like a resistor, RA, with resistance equal to10Ω.The curve shows the power dissipated in the the resistor. The unitof power is the Watt (W).P = VR x I = R x I2When the voltage is increased, the current, I, increases and thepower dissipated by the resistor, R, increases.When the value of the resistor is increased, I decreases and thepower dissipated by the resistor, R, decreases.The variable resistor, R, allows control of the current intensityin the circuit.Slide the cursor on the voltage and/or resistance tab toestablish the desired values.
Résistance (codes couleurs) 1.0
eduMedia
Onglet "couleur → valeur": Cliquer sur un codecouleur pour le sélectionner.Onglet "valeur → couleur": Cliquer puis faire glisser le curseurpour fixer une valeur.Tab "color → value":Click on a color code to select it.Tab "value → Color": Click and drag the slider to set avalue.
Kirchhoff's Laws 1.0
eduMedia
Electrical quantities like voltage and currentare measured for three simple circuits to demonstrate thefundamental laws governing electrical circuits:- Ohm’s law- node laws- circuit lawsFor each circuit, a graph allows us to follow the development ofcurrent intensity as a function of voltage for different values ofresistance.Move the voltage and resistance tabs to change their values.
Écosystème de l'étang 1.0
eduMedia
Un écosystème regroupe de nombreusespopulations d’espèces animales et végétales partageant lesressources d’un même milieu. Dans ce milieu de vie, on distinguel’ensemble des êtres vivants (végétaux, animaux) qui constitue labiocénose et l’environnement géologique (nature des sols, climat,eau) qui constitue le biotope. L’association de la biocénose et dubiotope constitue un écosystème. Il en existe autant que de milieuxnaturels (forêt, rivière, étang, désert, marais). La vie s'ymaintient grâce aux interactions qui se développent entre leséléments d'un écosystème (échanges d'énergie, relationstrophiques).An ecosystem consists ofmany populations of plant and animal species sharing the resourcesof a single medium. In the midst of life, there are all livingthings (plants, animals) which constitutes the biota and geologicalenvironment (soil type, climate, water) which is the biotope. Thecombination of the biocenosis and biotope is an ecosystem. Thereare as well as natural environments (forest, river, lake, desert,marsh). Life remains there through interactions that developbetween the elements of an ecosystem (energy exchanges, trophicrelations).
Puissance, énergie électrique 1.0
eduMedia
La puissance électrique P "consommée" par unappareil électrique est le produit entre la tension U à ses bornes(exprimée en Volts) et le courant I qui le traverse (exprimé enAmpères):P = U x IL'unité de la puissance est le Watt (W).En courant continu, P = U x IEn courant alternatif, pour les composants de type résistance(lampes, appareil de chauffage), P = Ueff x Ieff avec Ueff et Ieffles valeurs efficaces de la tension et du courant.L'énergie électrique "consommée" par un appareil électrique est leproduit entre sa puissance et la durée d'utilisation:E=PxtL'unité d'énergie est le Joule (J). Il est fréquent d'utiliseraussi le Watt-heure (Wh).1 Wh= 3600 JCliquer sur l'ampoule lorsqu'elle est grillée pour lachanger.Cliquer puis faire glisser les afficheurs sur la frisetemporelle.The electrical power P"consumed" by an electrical device is the product of the voltage Uat its terminals (expressed in volts) and the current I through it(in Amps):P = V x IThe unit of power is the Watt (W).DC, P = U x IAlternating current for resistance-type components (lights,heater), P = Vrms x Irms Vrms and Irms with effective values ​​ofvoltage and current.Electrical energy "consumed" by an electrical device is the productof its potency and duration of use:E = PXTThe unit of energy is the joule (J). It is also common to use theWatt-hours (Wh).1 Wh = 3600 JClick on the bulb is burned out when to change it.Click and drag the display on the temporal frieze.
Parabolic free fall 1.3
eduMedia
You can adjust the angle of the cannonrelative to the horizontal. The muzzle velocity can also beadjusted. A cursor is provided to enable the making ofmeasurements. The “Theory” button provides a mathematicalrepresentation of the experiment. Air resistance is ignored.Click and tilt the cannon.Click on [play] to shoot and [pause] to stop the motion.Click on 'theory' to show a mathematical representation of theexperiment.
Longitude et Latitude 1.0
eduMedia
Suite à de nombreux naufrages, l'Angleterredécide en 1714 de créer un bureau des longitudes (Board oflongitude) qui propose une récompense à qui saura trouver un moyende se localiser sur terre et sur mer.Le problème est très complexe et les navigateurs continuent àutiliser sextants et autres astrolabes pour se repérer en mer. Latélégraphie sans fil à la fin du XIXe siècle et plus récemment lesystème GPS avec son cortège de satellites, apportent enfin uneréponse précise à ce probléme.Chaque point de la surface de la Terre est repérée par deux anglesexprimés en degrés :Latitude : angle qui varie de 90°S (Sud) à 0° pour les pointssitués sous l'équateur puis de 0° à 90°N (Nord) pour les pointsitués au dessus de l'équateur.Longitude : angle qui varie de 180°O (Ouest) à 0° (méridien deréférence appelé méridien de Greenwich) et de 0° à 180° E(Est).Cliquer puis faire glisser le point P sur la carte de droite.Cliquer sur la Terre puis faire pivoter.Following numerousshipwrecks, England decided in 1714 to create a Bureau desLongitudes (Board of longitude) which offers a reward to anyone whowill find a way to locate on land and seaThe problem is very complex and browsers continue to use sextantsand astrolabes to identify at sea wireless telegraphy in the latenineteenth century and more recently GPS system with its attendantsatellites finally provide a precise answer to this problem.Each point on the surface of the earth is indicated by two anglesexpressed in degrees:Latitude angle ranging from 90 ° S (South) at 0 ° for points on theequator and 0 ° to 90 ° N (North) for points that are above theequator.Longitude: angle ranging from 180 ° W (West) at 0 ° (referencemeridian called Greenwich meridian) and 0 ° to 180 ° E(East). Click and drag the point P on the right map.Click on the earth and rotate.
Resistor (color codes) 1.0
eduMedia
"Colors → Values" tab: Click on a color tabtoselect it."Values → Colors" tab: Click and drag the slider to setavalue.
Arch bridge 1.5
eduMedia
Build an arch bridge out ofangledblocks.Because the structure is completely unstable until the twospansmeet in the middle, you have to use a centering falsework.Thecentering is a temporary wooden form supporting both spansuntilthey locked together at the topThe keystone is the center stone at the apex of an arch.This app provides also pictures of famous arch structures.
Electric Power and Energy 1.0
eduMedia
The electric power P "consumed" byanelectrical device is the product between the voltage V attheterminals (in Volts) and current I passing through it (in amps):P = V x IThe SI unit of power is the Watt (W).For direct current, P = V x IFor alternating current used with resistance type components(lamps,heaters), P = VRMSx IRMS where VRMS and IRMS are the RMSvalues ofvoltage and current.The electrical energie consummed by an electrical appliance istheproduct of electrical power (P) and the duration of timeused(t)E = P x tThe unit of energy is the Joule (J). Another frequently used unitisthe Watt-hour (Wh). Look at your home electricity bill.1 WH = 3600 JIn the power animation, click and slide the voltage icon toadjustthe voltage supplied to the circuit.In the DC and AC Energy animations, click and slide themeter(s)to see changes in energy consumption.
Days and nights over the year 1.0
eduMedia
The length of a day by comparison with thatofa night depends on the date and the place. This is the resultofthe sphericity of the Earth and its inclination in relation totheSun.The part of the Earth which lies in the shadow of theSuncorresponds to the night zone. This zone is a half sphere but,whentransferred to the plane projection of a flat world map,thisshadowed zone takes on a complex shape that changes in thecourseof a year.This animation enables us to simulate these changes andtoillustrate the following phenomena:The daylight period is longer in the northern hemisphere inthesummer.Summer in the northern hemisphere corresponds to winter inthesouthern hemisphere and vice versa.The summer and winter solstices are the points in the yearwherethere is the greatest difference in the durations of dayandnight.The equinoxes at the end of March and the end of September arethepoints in a year where the length of the day equals the lengthofthe night (12 h) everywhere on Earth.The lengths of day and night are equal for all points lying ontheEquator.The polar regions are subjected to a polar day (summer) or apolarnight (winter); these can last up to 6 months.Click on the "Read" button to speed up the passage of time.Click and drag the cursor to change the date.Click and then pivot the terrestrial globe to change theviewingangle.
La rouille 1.0
eduMedia
Des clous en fer sont placés danscinqenvironnements:tube 1: Juste de l'airtube 2: Une partie du clou est immergée dans de l'eau.tube 3: Une partie du clou est immergée dans de l'eau de mer.tube 4: Le clou est complètement immergé dans de l'eau bouillieetune couche d'huile isole l'eau de l'airtube 5: un produit déshydratant (Chlorure de calcium ou Sulfatedecuivre) absorbe l'humidité contenue dans l'air.Les différentes hypothèses de cette expériencepermettentd'expliquer la formation de la rouille:Seuls les clous des trois tubes de gauche rouillent, de façonplusou moins rapide. Les deux expériences de droite ontpermisd'empêcher (ou de très fortement ralentir) l'apparition delarouille.Ceci permet d'affirmer que le fer ne rouille que s'il est encontactavec l'air et l'eau.Iron nails are placedinfive environments:tube 1: Just airTube 2: A portion of the nail is immersed in water.tube 3: A portion of the nail is immersed in seawatertube 4: The nail is completely immersed in boiled water and anoillayer insulates the water from the airtube 5: a desiccant (calcium chloride or copper sulfate)absorbsmoisture from the air.Different assumptions of this experience can explain theformationof rust:Only three tubes nails rust left, more or less rapid.Bothexperiences have prevented right (or very slow sharply)theappearance of rust.This evidence that the iron rust if it is in contact with airandwater.
Communicating vessels 1.0
eduMedia
The surface of a liquid is always horizontal.When several vessels connect with each other, theyarecommunicating vessels. The surface of the liquid that fills eachofthe containers is the same level everywhere.An imbalance in levels is observed if:The containers are not interconnected or obstruction(valve)prevents the flow of liquid.The pressure is not the same in each container (this is the caseifa container is stopped).If one of the containers has a very small diameter, thencapillaryaction may significantly alter the level of theliquid.Click on the bottle or the valve to activate the animation.Click on the square to make it slide.Click on the button on the upper right to reset the animation.
Chute libre 1.0
eduMedia
L'inclinaison du canon peut être modifiéeainsique sa vitesse initiale.Pour une même vitesse d'éjection, on constate que ladistanceparcourue est maximale pour un angle de 45°. Cecis'applique pourle boulet du canon ou pour le javelot dusportif.La résistance de l'air étant négligée, la trajectoire estuneparabole exacte, d'où le nom de "chute libre parabolique". Lachutelibre verticale n'est qu'un cas particulier de la chutelibreparabolique.Cliquer puis faire glisser les poignées du canon pourmodifierl'angle de tir.Cliquer sur 'lecture' pour tirer et 'pause' pour stopperlemouvement.Cliquer sur 'théorie' pour afficherl'environnementmathématique.The angle of thebarrelcan be changed as well as its initial speed.For the same speed of ejection, it is found that the distance isamaximum angle of 45 °. This applies to the cannon ball orjavelinsports.The air resistance is neglected, the trajectory is anexactparabola, hence the name "parabolic free fall." Free verticaldropis only a special case of parabolic free fall.Click and drag the handles of the gun to change the angle oftheshot.Click on 'play' to shoot and 'pause' to stop the movement.Click on 'theory' to display mathematical environment.
Vases communicants 1.0
eduMedia
La surface d'un liquide esttoujourshorizontale.Lorsque plusieurs récipients communiquent entre eux, ils sontnommésvases communicants. La surface du liquide qui remplit chacundesrécipients est partout au même niveau.Un déséquilibre dans les niveaux est observé si:Les récipients ne sont pas reliés entre eux ou un obstacle(robinet)empêche la circulation du liquide.La pression n'est pas la même dans chaque récipient (c'est le cassiun des récipients est bouché).Si un des récipients à un diamètre très fin, alors des phénomènesdecapillarité peuvent modifier sensiblement le niveauduliquide.Cliquer sur la bouteille ou sur le robinet pour lesactionner.Cliquer puis faire glisser l'équerre.The liquid surfaceisalways horizontal.When several containers communicate with each other, theyareappointed communicating vessels. The surface of the liquidthatfills each of the containers is at the same levelthroughout.An imbalance in levels is observed if:Containers are not interconnected or obstruction (valve)preventsthe flow of liquid.The pressure is not the same in each vessel (this is the case ifoneof the containers is obstructed).If one of the containers to a fine diameter, whereas thecapillaryaction may significantly alter the level of theliquid.Click on the bottle or on tap to activate.Click and drag the square.
Sexual reproduction in animals 1.0
eduMedia
The mode of reproduction of sexualspeciesdepends on the living conditions.Terrestrial species develop a variety of sexual rites which leadtothe coupling of male and females. Very little gametesareliberated, fertilization is internal. The embryo and thefoetusdevelop in a protected environment within the uterus.Aquatic species liberate a large quantity of gametes into thewater.Fertilization takes place exteriorly to the female body.Thedevelopment of an individual is started from the larval stage.Thisdevelopment is "indirect"Click on one of the two modes of reproduction. Close the windowtogo back to the initial view.
Puissance dans une résistance 1.0
eduMedia
Un circuit est constitué d'un générateurdetension variable, d'une résistance R de valeur réglable etd'uneampoule en série.Un ampèremètre placé en série permet de mesurer le courant Iducircuit et un voltmètre placée en dérivation mesure la tensionURaux bornes de la résistance.L'ampoule réagit comme une résistance RA = 10Ω.La courbe mesure la puissance P dissipée dans la résistance.L'unitéde la puissance est le Watt (W)P = UR x I = R x I2Quand la tension d'alimentation augmente, I augmente et lapuissancedissipée par R augmente.Quand la valeur de R augmente, I diminue et la puissancedissipéepar R diminue.La résistance réglable R permet de contrôler l'intensité ducourantdans le circuit.Faire glisser les curseurs pour fixer les valeurs de la tensionetde la résistance.A circuit comprisesavariable voltage generator, an adjustable resistance value R andadropping mass.An ammeter connected in series allows the current measuringcircuitI and a voltmeter placed in shunt to measure the voltage URacrossthe resistor.The bulb acts like a resistor RA = 10Ω.The curve measures the power P dissipated in the resistor. Theunitof power is the watt (W)UR = P x R x I = I2When the supply voltage increases, I increases and thepowerdissipated by R increases.When the value of R increases, I decreases and the powerdissipatedby R decreases.The adjustable resistor R controls the current in thecircuit. Drag the sliders to set the values ​​of voltageandresistance.
Wegener (continental drift) 1.0
eduMedia
Since the 16th century, geographic mapshavebeen sufficiently precise to reveal parallels between the linesoflittoral coasts on opposite sides of the Atlantic Ocean.Despitethis, scientific theories maintained, until the beginning ofthe20th century, a “fixist” point of view, according to whichthecontinents and the oceans were always in theircurrentpositions.Alfred Wegener proposed his theory of a slow drifting ofthecontinents in his 1912 work “”The translation_paris ofContinents”and his 1915 book “The Origins of Continents andOceans”. He wasn’tthe first to propose such a hypothesis, but hewas the first tosupport it with a collection of observationsderived from severaldisciplines – like climatology, geology andpaleontology.The theory of continental drift took some time to beaccepted,mainly because Wegener had not succeeded in explainingthegeological processes which caused the drift.It was only in the 1950’s that new observations (mapping oftheocean floors by Maurice Ewing, the surfacing of magma attheoceanic ridges, paleomagnetism, convective movements inthemantle…) definitively validated Wegner’s hypotheses intheframework of a theory called “Plate Tectonics”.Click and drag the cursor to go through the geological ages.
Galvanic cell 1.0
eduMedia
Man has known, for a very long time thatmattercan be electrified. However, it is very complex to maintainaseparation of charges for the circulation of electric current.Itwas not until the late eighteenth century and the voltaic cellthatwe had our first current generator.In 1836, John Daniell, a British physician (1790-1845),inventeda new one cell battery made of two compartmentscontainingrespectively ionic aqueous solutions of copper sulphatein which astrip of copper metal has been inserted and zinc sulfatein which azinc metal strip has been inserted.The two compartments are connected by a salt bridge. Thisdevicecan generate a sustainable voltage of 1.1 V.Click on the checkbox to make the molecules and ions visible.
Interactive Earth 1.2
eduMedia
What did Earth look like 200 million years ago? Are VolcanoesandEarthquakes Related? Interactive Earth is an interactive toolfortablet that allows you to explore geography, climatesandgeodynamics. This project would not have been possible withouttheexpertise of IPGP (Institut de Physique du Globe de Paris) andNOAA(National Oceanic and Atmospheric Administration).InteractiveEarth is a great educational app that is fun to play andexplore.It allows you to superimpose composite images which showclouds,land and sea temperatures, or the global distributionofvegetation, snow and ice over the year. Additional layers letyouand your students explore oceanic currents, climates,platetectonics, volcanoes, earthquakes, faults.
Terre Interactive 1.2
eduMedia
À quoi ressemblait la Terre il y a 200 millions d'années?Existe-t-il une relation entre tremblement de terre et volcanisme?Terre interactive est une ressource pédagogique incontournablepourdécouvrir notre planète. C'est une collection deressourcesinédites en géographie. Documenté et intuitif, Terreinteractiveconstitue un formidable outil d’exploration. Pour ceprojet,eduMedia à bénéficié de l’expertise des plus grandesinstitutionsscientifiques comme l’IPGP (Institut de Physique duGlobe deParis), NOAA (National Oceanic and AtmosphericAdministration).Chaque application regroupe des cartes 3Dinteractivessuperposables. Les données dynamiques telles que lacirculation descourants marins ou l’évolution de la couverturevégétale sontanimées. De nombreuses autres cartes vous permettentde localisermontagnes, fleuves et déserts, ainsi que les climats,la tectoniquedes plaques, l'activité sismique et volcanique, lesfailles... Motsclefs : Terre, géosciences, géographie, séismes,tectonique,dérive-des-continents, longitudes, latitudes,Mercator,cartographie, carte, atlas, volcans, seismes.
Tierra Interactiva 1.1
eduMedia
¿Cómo se veía la tierra hace 200 millones de años?¿Estánrelacionados los volcanes y los terremotos? TierraInteractiva esuna herramienta interactiva para tabletaselectrónicas que permiteexplorar la geografía, el clima y lageodinámica de la tierra. Esteproyecto es posible gracias a losexpertos del IPGP (Instituto deFísica de la Tierra de París) y dela NOAA (Administración NacionalOceánica y Atmosférica). TierraInteractiva es una aplicacióneducativa y divertida de explorar quele permite colocar capassobre el globo terráqueo que muestrannubes, temperaturasterrestres y marinas o la distribución global dela vegetación, lanieve y el hielo durante el año. Capas adicionalesle permitirán austed y a sus estudiantes explorar las placastectónicas, volcanes,terremotos y fallas. Cambie de la vistainteractiva 3D a la vistade mapa 2D con un solo clic. Mapasdisponibles: • Geografía:Topografía, Océanos y Mares, Ríos y lagos,Nieve y hielo(*),Vegetación(*), Desiertos, Montañas. •Climatografía: Climas,Temperatura de los continentes (*),Temperaturas de la superficiemarina (*), Atmosfera (*), Circulacióntermohalina(*), Corrienteoceánica superficial. • Geodinámica:Vulcanismo, Terremotos,Fallas, Placas tectónicas, La derivacontinental (*). (*): Mapaanimado Palabras Clave: Geografía,terremotos, placas tectónicas,deriva continental, longitudes,latitudes, proyección Mercator,cartografía, mapa.